
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011 5203

Signal Codes: Convolutional Lattice Codes
Ofir Shalvi, Member, IEEE, Naftali Sommer, Senior Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract—The coded modulation scheme proposed in this paper
has a simple construction: an integer sequence, representing the
information, is convolved with a fixed, continuous-valued, finite
impulse response (FIR) filter to generate the codeword—a lattice
point. Due to power constraints, the code construction includes a
shaping mechanism inspired by precoding techniques such as the
Tomlinson-Harashima filter. We naturally term these codes “con-
volutional lattice codes” or alternatively “signal codes” due to the
signal processing interpretation of the code construction. Surpris-
ingly, properly chosen short FIR filters can generate good codes
with large minimal distance. Decoding can be done efficiently by
sequential decoding or for better performance by bidirectional se-
quential decoding. Error analysis and simulation results indicate
that for the additive white Gaussian noise (AWGN) channel, con-
volutional lattice codes with computationally reasonable decoders
can achieve low error rate close to the channel capacity.

Index Terms—Achieving AWGN capacity, coded modulation,
convolutional lattice codes, lattice codes, sequential decoding,
shaping.

I. INTRODUCTION

S EVERAL years ago [42] we came up with a simple con-
struction for coded modulation: pass the uncoded informa-

tion sequence (represented as an integer or an odd integer se-
quence) through a filter to output a continuous-valued modu-
lated codeword. To overcome the power increase at the output,
we proposed to apply a shaping mechanism inspired by pre-
coding techniques such as the Tomlinson-Harashima filter. We
termed the scheme “signal codes” due to the signal processing
interpretation of the code construction.

Following [48], this paper presents and analyzes this scheme
in depth. It first observes that by convolving the integer sequence
with the impulse response of the filter one gets a “convolutional”
lattice. The code described above, which can be naturally termed
“convolutional lattice code,” is obtained by taking a finite region
of this lattice using a shaping operation. It turns out that even a
short length FIR filter, properly designed, can generate a lattice
whose Hermite parameter (or nominal coding gain, normalized
minimum distance [13]) is large. As demonstrated later in the
paper, over the AWGN channel the scheme can work at a rate

Manuscript received June 25, 2008; revised January 19, 2011; accepted
March 13, 2011. Date of current version July 29, 2011. The work was supported
by the Israeli Science Foundation by Grant 634/09. The material in this paper
was presented at the IEEE Information Theory Workshop, Paris, France, 2003.

O. Shalvi is with the Department of Electrical Engineering–Systems, Tel-
Aviv University, Tel-Aviv, Israel, and also with Anobit Technologies, Herzlia,
Israel.

N. Sommer is with the Department of Electrical Engineering–Systems, Tel-
Aviv University, Tel-Aviv, Israel, and also with Anobit Technologies, Herzlia,
Israel.

M. Feder is with the Department of Electrical Engineering–Systems, Tel-Aviv
University, Tel-Aviv, Israel.

Communicated by H.-A. Loeliger, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2158876

[or signal-to-noise ratio (SNR)] close to the channel capacity
with practical decoders. This fact, together with their simple
construction, makes convolutional lattice codes a viable, attrac-
tive alternative for practical coded modulation.

The usage of lattice codes as a natural and elegant alternative
to random Gaussian codes [43], [44] in the continuous-valued
space is well known. As shown in [15]–[17], [33], [34], [53], lat-
tice codes attain the AWGN channel capacity. Lattice codes are
the Euclidean space analog of finite alphabet linear codes. Con-
sidering the rich arsenal of finite alphabet (binary) linear codes
that includes algebraic codes, convolutional codes, modern ca-
pacity achieving turbo codes [9], and low density parity check
(LDPC) codes [25], polar codes [4], and so on, one may have
expected that an analog situation will exist for lattice codes. Un-
fortunately, this is not the case. There are some specific lattice
codes based on known low dimensional classical lattices [13].
Other constructions utilized finite alphabet algebraic (or other)
codes [10], [21], to “thin out” the integer lattice by the code con-
straints. Yet until recently, the analogy was not utilized for de-
signing lattice codes directly in the Euclidean space or in finding
specific capacity achieving lattice codes.

Convolutional lattice codes, presented here, provides the de-
sired analogy to finite alphabet convolutional codes. The un-
coded symbols are convolved with a “filter pattern” to generate
a codeword. Since the codes are used over the Euclidean space
(real or complex), the operations are done in the real or com-
plex field. Noticing that the filter output has an increased power
which in effect, cancels out the coding gain, the code construc-
tion includes a mechanism inspired by pre-coding techniques
such as the Tomlinson-Harashima filter. This “shaping” can ei-
ther guarantee that the resulting lattice point will reside in the
cube corresponding to the input integer sequence (or the input
PAM/QAM constellation), or even better, reside in a more power
efficient shaping domain. In the latter case, the code will also
have a shaping gain in addition to the lattice coding gain. No-
tice that this technique actually provides a general framework
for constructing lattice codes directly in the Euclidean space,
composed of linear (or filtering) operation and shaping opera-
tion. This construction may be an alternative to the well known
techniques (constructions A-D, [13]) that generate lattices from
finite alphabet linear codes.

The role of the nonlinear shaping (pre-coding) operation
should be further motivated. Shaping “whitens” the codewords.
Otherwise one would expect that the codeword spectrum will
be proportional to the colored filter frequency response. Good
codes, and in particular capacity achieving codes, should have
a white spectrum! It also clarifies the major distinction between
convolutional lattice codes and other coding schemes that
use linear filtering, such as Partial Response Signaling (PRS)
and Faster Than Nyquist (FTN) signaling [40]. These tech-
niques also filter the input integer sequence, but do not employ
shaping, as one of their goals is to color the output to a desired

0018-9448/$26.00 © 2011 IEEE

5204 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

Fig. 1. An example of the shaping operation for a 2-D lattice.

spectrum. The distinction and the advantages of convolutional
lattice codes over these techniques is further discussed later.

Convolutional lattice codes can be decoded efficiently by se-
quential decoding [56]. Unfortunately, Viterbi decoding [54] or
backward-forward BCJR [8] decoding cannot be used. This is
since the shaping operation increases substantially the range of
possible integer values for any filter tap, and hence the number
of states in the Viterbi decoder. Sequential decoding may re-
quire high computational efforts to exceed the cut-off rate, yet it
can guarantee low average delay, and can handle convolutional
lattice codes with long filter patterns. For better performance,
we also propose a more elaborate bidirectional [29] sequen-
tial decoding, and allow larger memory for the decoding algo-
rithm. Several algorithmic techniques are provided that further
reduce the computational complexity. Error analysis and simu-
lation results for the proposed algorithms indicate that convo-
lutional lattice codes with computationally reasonable decoders
can achieve low error rate at dB from the AWGN channel
capacity. Since some of the loss is due to practical implemen-
tation compromises, the results actually indicate that the lattice
itself can attain a low error probability at less than 1 dB off the
optimum.

Note that the proposed scheme is attractive for intersymbol-
interference (ISI) channels. The code filter and the ISI filter
are essentially combined, resulting in a seamless unification of
equalization and decoding.

The general concept of designing codes directly in the Eu-
clidean space, originated with convolutional lattice codes, was
extended a few years later with the introduction of “low den-
sity lattice codes” (LDLC) [47], the lattice analog of LDPC
codes. In LDLC the lattice generator matrix has a sparse in-
verse. It was shown that by proper choice of the elements of
this sparse inverse, LDLC can approach the AWGN channel ca-
pacity with iterative decoding of linear complexity in the block
length. More recently LDLC’s become practical with shaping
[49], and highly efficient decoding [30], [57]. Thus, LDLC’s

may well be the best solution in terms of performance for con-
tinuous-valued channels. Convolutional lattice codes, presented
here, complement the picture for cases where low delay is de-
sired, or in cases where a somewhat lower rate can be tolerated
in turn for low computational complexity, obtained by the se-
quential decoding.

The outline of this paper is as follows. An introduction to
lattices and lattice codes is presented in Section II, followed
by a definition of convolutional lattice codes (Section III)
and methods to design lattices for convolutional lattice codes
(Section IV). Then, Section V presents several shaping al-
gorithms that can be used for practical lattice coding for the
AWGN channel, and Section VI discusses bounds on the error
probability. In Section VII, a description of computationally
efficient decoders is provided, followed by simulation results
in Section VIII.

II. LATTICES AND LATTICE CODES

A real lattice of dimension in () is defined as the
set of all linear combinations of real basis vectors, where the
coefficients of the linear combination are integers

is the generator matrix of the lattice, whose columns are
the basis vectors which are assumed to be linearly independent
over .

The Voronoi region (or Voronoi cell) of a lattice point is the
set of all vectors in for which this point is the closest lattice
point, namely

where . The volume of the Voronoi cell of a lattice is
, or in case is square.

The minimum squared distance of a lattice is defined as the
minimal squared Euclidean distance between any pair of lattice
points. Clearly, the minimum squared distance of a lattice equals
the squared length of the shortest nonzero lattice point

(1)

The kissing number of a lattice is defined as the
number of nearest neighbors to any lattice point. The Her-
mite parameter of an -dimensional lattice, also referred
to as the nominal coding gain of the lattice, is defined as

[24]. This definition of the
nominal coding gain properly normalizes the minimum squared
distance by the density of the lattice points such that it becomes
invariant to scaling.

A lattice code of dimension is defined by a (possibly
shifted) lattice in and a shaping region (e.g., an

-dimensional sphere), where the codewords are all the lattice
points that lie within the shaping region . Straightforward
encoding of an integer information vector by the lattice point

will not guarantee, in general, that only lattice points
within the shaping region are used. Therefore, the encoding
operation must be accompanied by shaping, where

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5205

Fig. 2. A typical lattice coding scheme for the discrete-time AWGN channel.

instead of mapping the information vector to the lattice point
, it should be mapped to some other lattice point

, such that the lattice points that are used as codewords
belong to the shaping region. The shaping operation is the
mapping of the integer vector to the integer vector .

The shaping operation is illustrated in Fig. 1 for a two-dimen-
sional lattice whose generator matrix is

Each information integer is assumed to be in the range to
, so a two-dimensional lattice code needs to use lat-

tice points as codewords. If no shaping is used, the information
vector is mapped directly to and the code-
words will be the 81 lattice points inside the parallelogram. If
a rectangular or spherical shaping region is used, each informa-
tion vector should be mapped to one of the 81 lattice points
inside the shown rectangle or circle, respectively, resulting in
average power which is lower by 4.59 and 4.77 dB, respec-
tively, than the no-shaping case. Note that traditionally the term
“shaping gain” is defined with respect to the average energy as-
sociated with the hypercube shaping domain, and is bounded by
1.53 dB [24, Sect. IV.A]. However, the shaping operation, as de-
fined above, can reduce the average energy by much more than
1.53 dB, since the starting point (after straightforward mapping
of the integer vector to the lattice point) may have average
energy which is much higher than the average energy of a hy-
percube, as illustrated above for the example of Fig. 1.

A typical lattice coding scheme for the discrete-time AWGN
channel is summarized in Fig. 2. First, the shaping operation
maps the information integer sequence to another integer se-
quence , as described earlier. The new sequence is encoded
by multiplication with the lattice generator matrix. Then, the re-
sulting lattice point is transmitted through the AWGN channel,
which adds additive Gaussian noise with variance .

The SNR is defined as , where is the av-
erage energy of a single component of the transmitted lattice
point . The effective coding gain of a lattice code is
measured by the reduction in required SNR to achieve a certain
target error probability relative to using the cubic lattice , with
a hypercube shaping region, using the same data rate.

At the receiver, a maximum-likelihood (ML) decoder should
find the closest lattice point within the shaping region to the
noisy observation in the Euclidean space. For a general lattice,
the computational complexity of finding the closest lattice point
to a given vector is exponential with the lattice dimension [1].
Therefore, lattices for practical use should have some structure
that enables simple decoding. Finally, an inverse shaping opera-
tion is performed to the detected lattice point in order to recover
the information integers.

An dimensional complex lattice in is defined as the set
of all linear combinations of a given basis of linearly indepen-
dent vectors in with complex integer coefficients. All the
properties of real lattices and real lattice codes that were cited
above can be extended in a straightforward manner to complex
lattices and complex lattice codes.

III. DEFINITION OF CONVOLUTIONAL LATTICE CODES

Convolutional lattice codes are defined as lattice codes which
are based on an -dimensional lattice whose gen-
erator matrix has the following Toeplitz form

...
...

...
. . .

...
...

...
. . .

...
...

. . .

. . .
...

. . .
...

...
...

. . .
...

...
...

...

(2)

where are the impulse response coefficients of
a monic causal FIR filter, which will be denoted as the gener-
ating filter. As will be explained in Section V, it is worthwhile
to choose a minimum-phase filter (i.e., a filter whose zeros are
inside the unit circle) due to the proposed shaping methods.
The -transform of the generating filter will be denoted by

.

5206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

The components of a lattice point , where is an
-dimensional vector of integers, are the convolution of the se-

quence of components of with the generating filter

(3)

for , where is assumed zero outside the
range 1 to . For convenience, we shall assume at this point
that are real valued and is a real lattice, but the
observations below can be extended in a straightforward manner
to complex lattices.

We shall now show that this lattice has better (or at least
equal) nominal coding gain than
the uncoded cubic lattice , which can be regarded as a lat-
tice whose generator matrix is the identity matrix. First, we
shall show that both lattices have the same density, i.e., same
value of . For the cubic lattice , for
every , where as discussed in Section II, for the proposed lat-

tice . As shown in Appendix A, for

we have (This should not be sur-
prising, since the first rows of form a lower diagonal ma-
trix whose determinant is exactly 1). Therefore, for large ,
is nearly a volume preserving transformation, and the density of
the proposed lattice approaches the density of the cubic lattice.

It is left to show that is greater of equal for the
proposed lattice than for the cubic lattice. For the cubic lat-
tice, we clearly have . For the proposed lattice,
denote the shortest nonzero lattice point by .
Let be the smallest index for which , where

denotes the component of . As noted above,
the sequence of components of is the convolution of the se-
quence of components of with the generating filter. Since
the generating filter is monic and causal, ,
and thus

(4)

Note that it is essential to use the shaping operation, as de-
scribed in Section II, in order to benefit from the improved
nominal coding gain of the lattice. Otherwise, assuming that
the information integers are independent, identically distributed
(i.i.d.), the lattice points are filtered sequences of i.i.d. integers,
whose power is larger by a factor of than the
power of the i.i.d. integers. However, by considering the lattice
point that corresponds to an “impulse” integer vector (with ’1’
in the first element and zero otherwise), it can be seen that the
improvement in the squared minimal distance due to filtering is
upper bounded by the same term , so it is never
enough to justify the power increase, unless shaping is used.
Several shaping methods for convolutional lattice codes will be
described in Section V.

In fact, incorporating the shaping operation is one of the
basic differences between convolutional lattice codes and other
coding schemes that employ linear filtering, such as partial

response signaling (PRS) and faster than Nyquist (FTN) sig-
naling (see [40] for an overview of these techniques). Both
these techniques obtain bandwidth efficiency by introducing
intentional ISI to a sequence of integer information symbols.
Therefore, these schemes essentially use lattice points, where
the lattice generator matrix is of the form (2). However, the
basic difference is that these schemes do not employ shaping.
As indicated earlier, without shaping, the coding gain of the
lattice can not be utilized, since the improvement in the squared
minimum distance of the lattice versus the cubic lattice is
always smaller than the increase in signal power due to the
filtering operation. As a result, these schemes try to achieve
effective gains in other ways: in PRS, the ISI is designed to
narrow the power spectrum of the transmitted signal with min-
imal degradation to error probability. As already noted in [41]:
“Herein lies an important fact about PRS-coded modulation:
Free distance cannot be gained via linear convolutions in the
complex field; the game is to lose as little as possible, while
reducing the bandwidth.” In FTN, the gain is higher data rate,
which is achieved by using signaling rate which is higher than
the Nyquist rate of the channel, and handling the unavoidable
ISI at the receiver. Convolutional lattice codes inherently
differ from these two techniques, since employing the shaping
operation enables to utilize the lattice coding gain, rather than
changing signaling rate or signal bandwidth. Therefore, it is
applicable to the simple AWGN channel, where PRS and FTN
envision a different channel scenario, namely one where signals
must have a certain power spectral density (PSD) shape or
property.

IV. LATTICE DESIGN: CHOOSING THE FILTER

In order to design a convolutional lattice code, we need to
choose the generating filter. We shall seek generating filters that
yield high . As will be shown later, it is beneficial to use
complex-valued lattices that are based on a complex-valued gen-
erating filter. For simplicity, we shall examine complex-valued
generating filters that have a th-order zero at , i.e., their

-transform is

(5)

where due to the minimum-phase restriction. This
simple choice is not necessarily optimal, but the experimental
results in the sequel indicate that it can lead to lattices with good
coding gains.

For (i.e.,) it can be easily seen
that . Since , the nominal coding
gain is bounded by 2 (3 dB). For , it is more difficult to
find analytically and a numerical search is required.
Methods that were developed for finding the minimum distance
between output sequences of ISI channels can be applied here,
and we have chosen to use the approach of [6], properly mod-
ified to our case. The resulting search algorithm, whose details
are presented in Appendix B, finds all the lattice points within
a given hypersphere, by developing a tree of all possible integer
sequences, and truncating tree branches as soon as it can iden-
tify that all the corresponding lattice points will lie outside the
hypersphere. The tree is searched in a depth first search (DFS)

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5207

Fig. 3. The squared minimum distance as a function of the filter’s zero for � � �. � is shown as a function of the zero’s phase, where every plot is for a
different value of the zero’s magnitude.

Fig. 4. The squared minimum distance as a function of the filter’s zero for � � �. � is shown as a function of the zero’s phase, where every plot is for a
different value of the zero’s magnitude.

manner, which can be easily implemented using recursion tech-
niques. In fact, this search algorithm is equivalent to a sphere
decoder [1], with the proper modifications due to the shift invari-
ance of the convolution operation and the band Toeplitz struc-
ture of the generator matrix .

Using this algorithm, the squared minimum distance was
found for various values of . Figs. 3 and 4 show
the results for and , respectively. The squared
minimum distance is shown as a function of the phase ,
with a different plot for each value of the magnitude .

5208 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

TABLE I
HIGH CODING GAIN FILTER PATTERNS

The figures are for radians, where the values
for can be obtained using the symmetry
relation and the periodicity relation

, where denotes the minimum
squared distance as a function of for a fixed . These
relations are derived in Appendix C.

It can be seen that the squared minimum distance improves
as the spectral null of the filter becomes deeper, either by in-
creasing the number of zeros or by letting the zero ap-
proach the unit circle more closely. However, as the spectral
notch becomes deeper, the dynamic range of the shaped inte-
gers becomes larger, as explained in Sections V and VII, which
increases the decoding and shaping implementation complexity.
The phase has a significant effect, and for a given , a global
optimum value for exists that maximizes .

Several generating filters with high are summarized
in Table I. For each generating filter, the table shows the squared
minimal distance and the nominal coding gain of the resulting
lattice (assuming the lattice dimension is large enough, as ex-
plained in Section III). The table also shows the nonzero por-
tion of the integer vector for which is the
shortest nonzero lattice point (where throughout this paper the
term “nonzero portion” of a vector means the portion that starts
with the first nonzero component and ends with the last nonzero
component). Note that all the integer sequences in the third
column of Table I maintain an interesting symmetry. Denote the
length of the integer sequence by . Then, for , the
’th element and the ’th elements are equal up to com-

plex conjugation followed by multiplication by or
(where the same factor is used for the whole sequence).

It can be seen that even short filters with , , and
zeros can achieve considerable nominal coding gains

of more than 6, 8, and 9.5 dB, respectively, where the shortest
lattice points correspond to reasonably short integer sequences.

Consider the special case of . In this case, the generating
filter is real-valued, and for , it approaches one of the
well-known partial response channels or .
As can be seen from Figs. 3 and 4, these filters have consider-
able (though not optimal) coding gain. However, as shown in
[2], these filters have null error sequences, i.e., infinite-length in-
teger sequences that yield a sequence of zeros when filtered with
these filters. This singularity is not desirable, since the norm of
many lattice points will be close to , making the effective
coding gain much smaller than the nominal coding gain. Also,

buffers of sequential decoders will overflow with high proba-
bility due to many possible candidates with short distance from
the observation. In fact, when Fig. 4 was generated, the search
algorithm could not find the minimum distance for the case of

and with reasonable computational complexity
due to this reason, and as a result the value of is not shown
for this combination.

As a result, from now on we shall assume a complex , re-
sulting in a complex lattice. Note that in case a real lattice is
required (e.g., in a baseband communication system), a com-
plex lattice can be transformed to a real lattice by using the real
and imaginary parts of each lattice point component as two in-
dependent real components.

The behavior for demonstrates that nominal coding
gain does not necessarily guarantee effective coding gain. In
fact, the nominal coding gains of dense -dimensional lattices
become infinite as while the effective coding gain is
bounded by channel capacity [24]. Therefore, the generating fil-
ters will be further checked for their effective coding gain using
bounds on error probability (Section VI) and numerical simula-
tions (Section VIII).

V. SHAPING

As discussed in Section III and throughout, shaping is essen-
tial for convolutional lattice codes, otherwise the power increase
due to the filtering operation is higher than the increase in min-
imal distance. As shown in Figs. 1 and 2, the shaping operation
should map the information integer vector to another integer
vector such that the resulting lattice point is inside a
desired shaping domain, such as a hypercube or a hypersphere.
We shall assume that the components of the information vector

belong to either PAM or QAM constellations, which are de-
fined as follows. An -PAM constellation is defined as the set

. An
-QAM constellation is defined as the set of complex integers

whose real and imaginary parts belong to an -PAM constella-
tion. Assuming equi-probable usage of the constellation values,
the average energy of -PAM and -QAM constellations is

and , respectively. PAM and QAM con-
stellations use odd-valued integers in order to have a zero-mean
constellation with an even number of points. Therefore, it will
be more convenient to restrict also the components of the shaped
integer vector to odd values. Using only odd values (instead
of all integer values) is equivalent to scaling and shifting the
lattice.

The shaping operation has a close resemblance to the pre-
coding operation for ISI channels, as illustrated in Fig. 5. The
purpose of precoding is pre-equalizing the distortion of a linear
channel , which is known at the transmitter, in order to
avoid the need for equalization at the receiver. In principle, the
transmitter can simply filter the data symbols with the inverse
channel filter , but the inverse filtering operation can sig-
nificantly increase the signal’s power and peak value. The solu-
tion is a precoder that maps the sequence of information sym-
bols to another sequence such that the constraints at the channel
input are fulfilled after filtering the new sequence with .
This is exactly the required operation of the shaping algorithm

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5209

Fig. 5. Resemblance between shaping for lattice codes and precoding for ISI channels. (a) Preequalization for ISI channels. (b) A lattice code with shaping for
the AWGN channel.

for convolutional lattice codes, where the generating filter
replaces the channel inverse . Three shaping methods
for convolutional lattice codes will now be proposed, where the
first two are indeed based on well-known precoding schemes for
ISI channels.

A. Tomlinson-Harashima Shaping

The first shaping method that we shall consider is based on
Tomlinson-Harashima precoding [52], and uses a hypercube
shaping domain. The components of the information vector

are assumed to be i.i.d. -QAM symbols. The shaping
operation is

(6)

for , where and are the th component of the
shaped integer vector and the information vector , respec-
tively, and is a complex integer. The inverse shaping opera-
tion (i.e., recovering the information integers from the shaped
integers) is then a simple modulo operation. The integers

are chosen such that the real and imaginary parts of the com-
ponents of are in . Substituting (6) in the basic
encoding operation of convolutional lattice codes, we get

(7)

Therefore, we should choose

(8)

where denotes the complex integer closest to .
Equations (6)–(8) are equivalent to a Tomlinson-Harashima

precoder for the ISI channel . These equations

form a recursive loop, which will be stable (i.e., does not in-
crease without bound as increases) if and only if the gener-
ating filter is minimum phase. It is well known [22] that
except for some special cases (including for example the case
of), the output of a Tomlinson-Harashima precoder is
a spectrally white sequence uniformly distributed over ,
for both real and imaginary parts, so its power is . Since the
power of uncoded -QAM symbols is , the power of

is almost the same as the uncoded signal power, albeit higher
by a factor of , which is negligible for large .
The power spectral density of the shaped integer sequence
is proportional to , where is the Fourier trans-
form of the generating filter. Thus, is the generating filter has a
deep spectral notch (such as the filters in Table I), will be a
narrow-band signal.

This shaping scheme guarantees the range of the first com-
ponents of the lattice point, since the filtering and shaping op-
erations (7) and (8) are done only for . The last

components , which correspond to the “con-
volution tail”, can not be precisely controlled and may there-
fore have large magnitude. This problem is common to all the
shaping methods that are proposed in this section. Three pos-
sible solutions are suggested in Appendix D which solve the
problem at the price of negligible data rate degradation.

B. Systematic Shaping

The second shaping scheme is based on flexible precoding
[31]. A lattice code that uses this shaping scheme can be re-
garded as “systematic,” by extending the definition of a system-
atic binary code, for which the information bits are part of the
codeword components, in the following manner. A lattice code
will be regarded as systematic if the information integers can
be extracted from the corresponding noiseless lattice point by
rounding the lattice point components (or part of them, in case

5210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

of a nonsquare generator matrix). Since we use odd integers, the
rounding operation will be replaced by quantizing to the closest
odd integer.

For the systematic shaping scheme, the shaping operation is

(9)

for , where the complex integer sequence is
now chosen such that the real and imaginary parts of ,
the difference between the coded and uncoded sequences, will
belong to the interval . By substituting (9) in the basic
encoding operation , the required value
of is

(10)

Equations (9)–(10) are equivalent to flexible precoding [31] for
the ISI channel . As for Tomlinson-Harashima
precoding, should be minimum-phase in order to guar-
antee the stability of the recursive loop.

With systematic shaping, the lattice point components equal
the information integers plus an additive “dither” signal, whose
real and imaginary parts have magnitude less than 1. Therefore,
it is indeed a systematic lattice code, as defined above. The in-
verse shaping operation filters to get , and then quantizes
the components to get . Alternatively, can be recovered
from using (10) and then can be recovered using (9).

Following the same arguments that were used for Tomlinson-
Harashima shaping, the additive dither would generally be uni-
formly distributed and uncorrelated with the input sequence.
Therefore, if the input to the shaping operation is -QAM sym-
bols, the resulting shaping domain is a hypercube, where the real
and imaginary parts of the lattice codewords are uniformly dis-
tributed in , and the same power increase
factor of Tomlinson-Harashima shaping exists also here. How-
ever, systematic shaping can be combined with standard constel-
lation shaping algorithms, such as trellis shaping [23] or shell
mapping [32], such that additional shaping gain of up to 1.53 dB
can be potentially obtained. This can be done by applying a con-
stellation shaping algorithm to the uncoded sequence prior
to systematic shaping. The combined operation of systematic
shaping and filtering with does not alter the shaping prop-
erties of the input signal significantly, since it is equivalent to
adding a small dither, so the constellation shaping gain will be
retained.

C. Nested Lattice Shaping

The nested lattice shaping scheme tries to achieve some of the
potential 1.53 dB shaping gain benefit of a hypersphere shaping
domain over a hypercube shaping domain. Consider the Tom-
linson-Harashima shaping operation (6). Suppose that instead
of setting in a memoryless manner as in (8), we choose a se-
quence that minimizes the energy of the resulting lattice
point components , where . Using vector no-
tations for (6), we have

(11)

Denote the nonshaped lattice point by . From (11), we
then have . Choosing that minimizes

is essentially finding the nearest lattice point of the scaled
lattice to the nonshaped lattice point , where the chosen
codeword is the difference vector between the nonshaped lat-
tice point and the nearest lattice point . As a result,
the chosen lattice points will be uniformly distributed along the
Voronoi cell of the coarse lattice . Therefore, the resulting
shaping scheme is equivalent to nested lattice coding [12], [17],
where the shaping domain of a lattice code is chosen as the
Voronoi region of a different, “coarse” lattice, usually chosen
as a scaled version of the coding lattice. Such a shaping domain
has the potential to attain some of the shaping gain which is at-
tainable by a spherical shaping domain.

The complexity of finding the nearest lattice point is the same
as the complexity of ML decoding in the presence of AWGN.
However, unlike decoding, for shaping applications it is not crit-
ical to find the exact nearest lattice point, as the result of finding
an approximate point will only be a slight penalty in signal
power. Therefore, approximate algorithms may be considered.
As shown in Section VIII, close-to-optimal shaping gains can
be attained by nested lattice shaping using simple sub-optimal
sequential decoders such as the -algorithm (see [7] and refer-
ences therein). Interestingly, it should be noted that the criterion
for good shaping can be generalized to meet the needs of com-
munications systems. For instance, the algorithm can combine
power optimization with peak magnitude optimization or with
short-time power optimization, or even with spectral shaping
optimization that can reduce the bandwidth of the signal, simi-
larly to PRS.

D. Shaping for Nonminimum-Phase or Non-FIR Filters

The proposed shaping methods incorporate nonlinear feed-
back loops, which are stable only if the generating filter is min-
imum-phase. In Appendix E, the shaping algorithms are ex-
tended to nonminimum-phase filters, and also to autoregressive,
moving average (ARMA) filters, which can have both poles
and zeros in the plane. Nonminimum-phase filters may have
benefits for fast fading channels or for channels with impulse
noise. ARMA filters are useful, for example, when the encoding
operation should be combined with preequalization for an ISI
channel. Joint preequalization and encoding is also described in
this appendix.

VI. BOUNDS ON THE PROBABILITY OF ERROR

We shall consider complex lattice codes, used for the com-
plex AWGN channel with complex noise variance (i.e., the
variance of the real and the imaginary parts of the noise is).
As explained in Section II, a ML decoder should find the closest
lattice point to the noisy observation within the shaping domain.
We shall assume that the decoder ignores the shaping domain
boundaries, and thus performs “lattice decoding” instead of ML
decoding [17]. The probability of error will be defined
as the probability that a transmitted lattice point was mistakenly
detected as a different lattice point. Due to the linearity of the
lattice, the probability of error for such a decoder does not de-
pend on the transmitted lattice point, so we can calculate it under
the assumption that the zero lattice point was transmitted. Then,

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5211

is bounded by the union bound ([24], properly modified
for the complex case)

(12)

where is the Gaussian error function. The lower and upper
bounds of (12) are usually not practical since the lower bound
may be too loose, where the upper bound requires an infinite
sum. can then be approximated by the union bound esti-
mate, defined as

(13)

where is the kissing number of the lattice, i.e., the
number of nearest neighbors to any lattice point. The union
bound estimate is expected to be a good approximation at high
signal to noise ratios. Define the effective length of an integer
vector as the length of the nonzero portion of . Due to the
shift invariance of the convolution operation, for each lattice
point that corresponds to an integer vector with effective length
, there will be different lattice points with the same

norm, corresponding to all possible shifts of the nonzero por-
tion of the corresponding integer vector, where is the lattice
dimension. Also, for each lattice point there will be 4 lattice
points with the same norm that correspond to multiplications of
the corresponding integer vector by and . Therefore, we
shall assume that , where de-
notes the effective length of the integer vector that corresponds
to the shortest nonzero lattice point. This assumption holds for
all the filters of Table I. In case there are several lattice points
with the shortest norm, except for shifts and multiplications by

and , the search algorithm of Appendix B will find them,
and in such a case the above value of should be fur-
ther multiplied by the number of such points.

Regarding the upper bound of (12), it is not necessary to sum
over all nonzero lattice points, but only over Voronoi relevant
lattice points. A Voronoi relevant lattice point is defined
as a lattice point that defines a facet of the Voronoi region of the
origin , where this facet is perpendicular to and inter-
sects it in its midpoint . The set of Voronoi-relevant vectors
can be defined [1] as the minimal set for which

Practically, it is hard to find all the Voronoi relevant points of a
high-dimensional lattice (A lattice of dimension can have up
to Voronoi relevant vectors [1]). Therefore, can
be approximated by truncating the infinite sum and taking into
account only lattice points whose squared norm is bounded by

. We then get the following approximation:

(14)

In order to use this approximation, the search algorithm
of Appendix B can be used to generate a list of all lattice
points whose squared norm is less than . This list is
then used as an input to a sorting algorithm, whose details are

Fig. 6. A histogram of the squared norm of the lattice points for the lattice that
corresponds to the third row of Table I.

described in Appendix F, which can determine for each lattice
point whether it is Voronoi-relevant or not. As explained in
Appendix B, the search algorithm finds a single representative
from each group of lattice points that correspond to an integer
vector with a shifted nonzero portion, and up to multiplication
by or . Denote the effective length (as defined above)
of this integer vector by . As noted in Appendix F, if one
of the lattice points within such a group is
Voronoi-relevant, then all the lattice points in the group are
also Voronoi-relevant. Therefore, it is enough to sum in (14)
over a single representative from each such group (which is the
natural output of the search algorithm) and add a weighting
coefficient of to each element in the sum.

The search algorithm of Appendix B was applied to the lattice
generated by the third filter of Table I, with (10.2
dB above of the cubic lattice). This has required the exam-
ination of 500 billion tree nodes. Fig. 6 shows a histogram of the
squared Euclidean distance of the 5593 lattice points that were
found, where each bar corresponds to an interval of length 0.25
and shows how many lattice points had squared norm within this
interval. The norms assume that all integer values are allowed
for the integer vector components, without the restriction of odd
integers that was imposed in Section V. When this restriction is
applied, the norms should be scaled up by a factor of 4. As ex-
plained above, only a single representative is counted from each
group of lattice points that corresponds to shifts and multiplica-
tions by or .

The leftmost bar corresponds to the (single) shortest nonzero
lattice point, whose squared norm is 5.90. It can be seen that the
first several shortest lattice points (whose squared norms are in
the range 5.75–7.25) are discrete points, and there is no “flood”
of lattice points whose norm is very close to the norm of the
shortest nonzero lattice point. For higher norms, the number of
lattice points grows exponentially with the Euclidean norm.

The sorting algorithm of Appendix F was then applied to the
output of the search algorithm in order to find which of the lat-
tice points is Voronoi-relevant. Almost all the lattice points were

5212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

found to be Voronoi-relevant, and only 49 out of the 5,593 lattice
points were found to be non-Voronoi-relevant. Most of those 49
points have a relatively high norm (larger than 8.75). The fact
that most of the lattice points within the feasible search radius
are Voronoi-relevant shows that our search did not go far from
the Voronoi region of the origin.

These lattice points will be used in Section VIII to compare
the simulation results with the bounds of (13) and (14). Note
that union bounds are not expected to be valuable, in general,
beyond the channel cutoff rate [24].

Note that convolutional lattice codes are similar in their na-
ture to binary convolutional codes in the sense that the prob-
ability of an error event starting at symbol does not depend
on (ignoring frame boundary effects), where an error event
at symbol is defined as a sequence of decoder symbol errors
starting at the th symbol. As in (12), this error event proba-
bility can be lower bounded by and upper bounded

by where denotes the first element of
the vector . Therefore, the probability of a frame error for
a fixed generating filter approaches 1 as the frame length ap-
proaches infinity. As shown in Section VIII, for practical frame
lengths of several thousands of symbols the frame error rate is
still low. As attempting to approach the channel capacity bound
requires very large frame length, the length of the generating
filter should be increased as frame length increases (see [45]).

VII. COMPUTATIONALLY EFFICIENT DECODERS

As shown in Fig. 2, the decoder consists of two blocks. First,
is detected and then an inverse shaping operation is used to

calculate the corresponding . The inverse shaping operation,
which is relatively simple, was defined in Section V, and in this
section we propose algorithms for detecting .

A. Reduced Complexity ML Decoding

Consider the discrete-time AWGN channel ,
where is the component of the transmitted lattice point,
is a sequence of zero-mean, i.i.d. complex Gaussian random
variables with variance and is the noisy observation (see
Fig. 2). As explained in Section II, when a lattice code is used for
transmission through the AWGN channel, a ML decoder should
find the closest lattice point within the shaping region to the
noisy observation in the Euclidean space. Sometimes it is not
simple to take the nonlinear shaping operation into account in
the decoding process, and then “lattice decoding” [17] can be
used, where the decoder ignores the shaping domain (lattice de-
coding was assumed in Section VI when bounds on error proba-
bility were derived). With proper coding and decoding schemes,
channel capacity can still be approached although lattice de-
coding is used [17]. For lattice decoding, the decoder should
find the values of the ’s that maximize

(15)

where , is the generating filter.
Finding the values of the ’s is essentially an equalization

problem: an integer symbol sequence was convolved with a
filter, and has to be detected from the noisy convolution output.

As shown in [20], minimum Euclidean distance decoding can
be implemented by a Viterbi Algorithm (VA) whose state is

. The number of trellis branches of this VA
is equal to the constellation size of , raised to the power of .
Therefore, the VA is practical only if is small, and if the dy-
namic range of the shaped symbols is not prohibitively high.
However, good codes can result in values with large range.
For example, for Tomlinson-Harashima shaping (Section V-A),
the sequence can be obtained by applying the filter
on the transmitted sequence , which is a white sequence. As
good generating filters have deep spectral nulls, has
high spectral peaks and thus it significantly enhances the mag-
nitude of . We note that since the real and imaginary parts of

are in the range , the magnitude of can be bounded
by . In general, a straightforward VA may
be too complex, and a reduced-complexity VA decoder should
be used.

Reduced complexity Viterbi decoding can follow the well-
known techniques used in the context of convolutional codes
and ML channel equalization. One class of such techniques is
sequential decoding, e.g., the Fano [26] and stack [55] algo-
rithms. Another class includes list algorithms such as the M-al-
gorithm (see [7] and references therein) and the T-algorithm [3].
A third class is reduced states sequence detection (RSSD) algo-
rithms (e.g., [19]).

The computational complexity of sequential decoding of any
tree code obeys a Pareto distribution [28]. Such a distribution re-
sults in the computational cutoff effect, where for a given infor-
mation rate, complexity increases abruptly below some cutoff
SNR. Therefore, all the above reduced-complexity decoders are
expected to be effective only above the cutoff SNR, which is
known to be approximately 1.7 dB above the Shannon capacity
for the high SNR regime of the AWGN channel [24]. On the
other hand, even when the mean or the variance of the number of
computations becomes asymptotically infinite, the probability
that this number will exceed a predefined threshold is still fi-
nite. Therefore, if a target finite error rate is defined, sequential
decoders can achieve this error rate with finite (though probably
large) complexity even beyond the cutoff rate.

In Section VIII we shall show that the sequential stack de-
coder can be used for decoding of convolutional lattice codes
close to the cutoff rate. We shall also use bidirectional sequen-
tial decoders with large complexity to demonstrate that low error
rate can be achieved even more than 0.5 dB beyond the cutoff
rate, with large (but still finite) computational resources. These
decoding algorithms will now be further elaborated.

B. The Heap-Based Stack Decoder

The stack decoder [55] is an algorithm to decode tree codes,
which works as follows. A stack of previously explored paths
in the tree is initialized with the root of the tree code. At each
step, the path with best score in the stack is extended to all its
successors, and then deleted from the stack. The successors then
enter the stack. For a finite block with known termination state,
the algorithm terminates when a path in the stack reaches the
termination state at the end of the block. For convolutional lat-
tice codes, each path in the tree corresponds to a sequence of
integers , and its successors are sequences of the

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5213

form for various values of . Any im-
plementation of the stack decoder should use a properly chosen
database that enables efficient implementation of the basic step
of the decoder, such as a balanced binary tree [36]. We propose
an implementation which is based on the heap data structure
[14]. The detailed implementation is described in Appendix G.

For the Tomlinson-Harashima and systematic shaping
methods, the lattice point components are bounded in the
interval . Therefore, the stack decoder can ignore
paths for which a resulting lattice point component is outside
this range. The resulting decoder is a reduced-complexity
approximation of an ML decoder, since it takes into account the
shaping domain boundaries. This technique is very effective
for complexity reduction, and will be referred to as “x-range
testing.” On the other hand, for nested lattice shaping, trunca-
tion of incorrect paths is more challenging, so the shaping gain
of the encoder is traded with the decoder’s complexity.

Each path in the stack is assigned a score that should reflect
the likelihood of this path to be the correct path, given the noisy
channel observation. Naturally, we would assign scores to the
paths in the stack according to the negated squared Euclidean
distance of the resulting lattice point from the noisy channel ob-
servation as in (15). However, the stack contains paths of dif-
ferent lengths. If we use the negated squared distance, shorter
paths will get higher score, as less negative terms are accumu-
lated. This is not desired, since we want to extend the path which
coincides with the correct path, even if it is much longer than
other incorrect paths in the stack. Therefore, the path scores
should be defined such that the effect of path length is elimi-
nated. This problem is addressed in Section VII-C.

C. The Fano Metric

For sequential decoding of binary convolutional codes, Fano
suggested to subtract a bias term from each increment of the
natural likelihood score, where the bias equals the code rate

. Massey [35] has shown that the score assignment problem
is equivalent to decoding of a code with variable length code-
words, and that the Fano metric is indeed the correct choice for
stack and Fano decoding of binary convolutional codes, in the
sense that the most likely path is extended in each step.

Massey’s derivation can be extended to the Euclidean case, as
done in [51] for the general case of lattice decoding. Here, we
follow the lines of [51] and develop the Fano metric for convo-
lutional lattice codes with Tomlinson-Harashima shaping. Sim-
ilarly to convolutional codes, in order to extend the most likely
path in each step, a bias term has to be subtracted from the score
increments of (15)

(16)

where

(17)

See Appendix H for the derivation of (16) and (17).
We can make an interesting observation from (17). In order

for the stack algorithm (as well as the Fano algorithm) to work,

the expected value of the score of the correct path must increase
along the search tree, otherwise the stack decoder may prefer
shorter paths and the correct path may be thrown away [26].

For the correct path, we have .

Therefore, in order for the expected value of the path score to
increase along the tree, we need to have in (16). From
(17), we then have , resulting in .

Now, when using a lattice code for the real-valued AWGN
channel with power limit and noise variance , the max-
imal information rate is limited by the capacity .
Poltyrev [38] considered the AWGN channel without restric-
tions. If there is no power restriction, code rate is a meaningless
measure, since it can be increased without limit. Instead, it was
suggested in [38] to use the measure of constellation density,
leading to a generalized definition of the capacity as the max-
imal possible codeword density that can be recovered reliably.
When applied to lattices, the generalized capacity implies that
there exists a lattice of high enough dimension that enables
transmission with arbitrary small error probability, if and only if

. A lattice that achieves the generalized ca-
pacity of the AWGN channel without restrictions, also achieves
the channel capacity of the power constrained AWGN channel,
with a properly chosen spherical shaping region (see also [17]).

As discussed in Section III, and taking into account that our
lattice is scaled by 2 due to using only odd integers, for large lat-

tice dimension we have , and the Poltyrev
capacity condition for complex lattices becomes . In-
terestingly, this is exactly the necessary condition that was de-
veloped above for the stack decoder to converge to the correct
path. As this is a necessary but not sufficient condition, the stack
decoder is not guaranteed to converge above capacity. Indeed, it
is well known that sequential decoders can practically work only
above the cutoff SNR, which is approximately 1.7 dB above ca-
pacity for the high SNR regime [24]. (See [46] for another ex-
ample of using the Fano metric for lattice decoding.)

D. Bidirectional Sequential Decoding

After developing the Fano metric for the stack (or Fano) al-
gorithms, we shall now turn to develop a bidirectional decoding
scheme for convolutional lattice codes. It is well known that
sequential decoding is sensitive to noise bursts [28]. In [29], a
bidirectional decoding algorithm was proposed for binary con-
volutional codes in order to reduce the complexity of decoding
through a noise burst. Two stack decoders are working, where
one works from the start of the block forward and the other
moves from the end of the block backward. The algorithm stops
when the two decoders meet at the same point. For a strong
noise burst, each decoder will only have to face half the length
of the burst. Assuming exponential complexity increase along
the burst, the resulting complexity will be the square root of the
complexity of a single decoder.

For convolutional lattice codes, the two stack decoders work
as follows. Each stack decoder holds a stack of previously ex-
plored paths, where each path is assigned a score according to
the Fano metric, as described above. Both decoders work simul-
taneously. At each step, the path with best score in the stack is

5214 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

extended to all its successors and then deleted from the stack.
The successors then enter the stack. Before deletion, the deleted
path is compared to all the paths of the stack of the other de-
coder to look for a merge. A merge is declared when a path
in the other decoder’s stack is found with the same state at the
same time point in the data block as the current decoder, i.e.,
last symbols of the forward decoder match the time-reversed
last symbols of the backward decoder. In order to reduce the
probability of false merge indications, a match of more than
symbols can be used. However, as the number of bits in each ex-
tended constellation symbol is usually large (as demonstrated
in Section VIII, where 17 bits were needed to store the real or
imaginary part of), the probability of false indication is usu-
ally low enough for a match of symbols.

A straightforward search for a merge will require a full pass
on the whole stack every symbol. In order to avoid it, each stack
entry can be assigned a hash value according to its last sym-
bols. For each possible hash value, a linked list is maintained
with all the stack entries that are assigned this value. Then, each
decoder calculates the hash value that corresponds to its last
symbols, and searches only the linked list of the other decoder
that corresponds to this value, resulting in a much smaller search
complexity.

Note that in order to enable bidirectional decoding, the data
must be partitioned to finite-length blocks, with known initial
and final state. In principle, knowing both the initial and final
states in each block requires transmitting additional overhead
symbols. However, this overhead is anyway required for some
of the shaping algorithms that were presented in Section V in
order to properly terminate the shaping operation, as explained
in Appendix D. It is desired to make the block length (or lattice
dimension) as large as possible in order to make the effect of
this overhead on code rate as small as possible. However, in-
creasing the block size introduces delay to the system. In addi-
tion, the probability to have two or more distinct strong noise
bursts that appear in the same block increases. In such a case,
each of the two decoders will have to face a strong noise burst
alone, and bidirectional decoding will no longer be effective.
Therefore, the block length should be determined according to
the tradeoff between these factors.

Bidirectional decoding is possible for convolutional lattice
codes due to the band-Toeplitz structure of the lattice generator
matrix. However, decoding backward is not straightforward, as
reversing the time axis causes the minimum phase generating
filter to become maximum phase. Extending the paths of the
stack has an effect similar to filtering with an autoregressive
filter with nonstable poles, resulting in choosing extension sym-
bols that grow without bound. This can be easily solved by fil-
tering the codeword (in the forward direction) with the allpass
filter , and letting the backward decoder work
on the filtered data, which is equivalent to a code which is based
on a maximum-phase generating filter. Decoding this data back-
ward will now obey a stable recursion, where the allpass filtering
does not change the power spectrum of the additive noise.

VIII. SIMULATION RESULTS

We shall now demonstrate the performance of convolu-
tional lattice codes using simulations of the discrete-time

AWGN channel, as shown in Fig. 2. All the simulations are
for 6 information bits per (complex) symbol (equivalent to
uncoded 64-QAM). Unless otherwise stated, the simulations
use the generating filter for
and (the third generating filter of Table I),
combined with Tomlinson-Harashima shaping (Section V-A).
Data is framed to finite-length blocks, where block size (lattice
dimension) is . The total number of blocks
that were simulated for each result is 20 000. The SNR is
defined as , where is the average power of the
lattice point components and is the variance of the complex
noise (such that the variance of the i.i.d. real and imaginary
parts of the noise is each).

In Appendix D, three solutions were proposed for shaping
the “convolution tail.” In this section, we shall use the second
proposed scheme, where shaping and encoding are done in a
continuous manner, and values of are transmitted once
every symbols. As shown in Appendix D for this
scheme, transmitting three ’s using 8-QAM requires 24 sym-
bols. Therefore, the actual information rate is not 6 bits/symbol
but . For a given SNR, the
capacity for the discrete-time complex AWGN channel is

. To achieve a capacity of 6 bits/symbol, the re-
quired SNR is 18 dB, where for 5.93 bits/symbol, the required
SNR is 17.8 dB. Therefore, data framing results in a loss of
0.2 dB. This loss is essentially an implementation loss and is
not related to the coding properties of the lattice. Note also that
this implementation loss can be made negligible by increasing
block length, or by using a more efficient coding scheme for
transmitting the tail symbols.

Fig. 7 shows the frame error rate (FER) versus SNR using
the stack and the bidirectional stack decoders. For each de-
coder, the FER is shown for stack sizes ranging from to .
The figure also shows the channel capacity for 5.93 bits/symbol
and the error probability approximations that were presented in
Section VI. The same results are also presented in Fig. 8, where
for each maximal stack length, the figure shows the required
SNR for achieving frame error rate of . Note that this FER
value is certainly a practical value for many applications, e.g.,
wireless networks.

It can be seen that increasing the maximal stack length im-
proves the performance for both the stack and the bidirectional
stack decoders. This can be explained as follows. When a noise
burst is present, incorrect paths in the stack will temporarily
have better score than the correct path. If the number of such
incorrect paths exceeds the stack length, the correct path will be
thrown out of the stack. Such a correct path loss (CPL) event will
result with a decoding error. Figs. 7 and 8 show that for FER of

and stack length which is smaller than , most of the er-
rors result from CPL events and not from decoding to a wrong
codeword that was closer to the observation in the Euclidean
space, so increasing the stack length improves the FER.

Fig. 7 shows only the FER and does not show the symbol
error rate (SER) or bit error rate (BER), since the SER and the
BER are high even when the FER is relatively low. The reason
is that most frame errors are due to CPL events, as described
above. In a CPL event of the proposed unidirectional algorithm,
all the data symbols from the CPL start point until the end of

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5215

Fig. 7. Frame error rate for stack and bidirectional stack decoding, for various maximal stack lengths. Each curve is labeled with the corresponding maximal stack
length.

Fig. 8. Required SNR to achieve frame error rate of �� for the stack and
bidirectional stack decoders.

the block are lost, so on average an erroneous frame has half
of its symbols in error. Therefore, the proposed decoders are
mainly suited for data applications, where a frame with errors
is ignored, regardless if it has a single error or many errors, and
therefore FER is the relevant performance measurement.

It can be seen that with a very large stack length of , and
for frame error rate of , the stack decoder can work as close
as 2.9 dB from channel capacity, where the bidirectional stack
decoder can work as close as 2.3 dB from channel capacity.

It is worthwhile to compare the simulation results to the max-
imal achievable rate under the constraints of a finite frame length

and frame error probability . As shown in [39], this rate is

closely approximated by , where
is the capacity, is a characteristic of the channel referred to
as channel dispersion, and is the complementary Gaussian
cumulative distribution function. For the real AWGN channel
with SNR P, and .

Substituting real valued dimensions, ,
symbol and solving for P,

we get that this rate is achievable under the above frame length
and FER constraints for SNR of 18.1 dB. Therefore, the stack
and bidirectional stack decoders are as close as 2.6 and 2 dB,
respectively, from the minimal required SNR under these finite
frame length and FER constraints.

The quality of the coding scheme results from the properties
of the underlying lattice, as well as from the shaping and de-
coding algorithms. It is beneficial to separate these factors and
isolate the coding properties of the lattice itself by evaluating
what would the distance to capacity be if the proposed lattice
was used with ideal shaping and decoding. Since the simula-
tions were performed with Tomlinson shaping, the input to the
AWGN channel was uniformly distributed. Therefore, the actual
bound on the achievable rate is not the channel capacity but the
mutual information between the input and output of the AWGN
channel under uniform input distribution constraint. Numerical
calculation shows that 5.93 bits/symbol can be transmitted with
uniform channel input distribution at SNR of 18.9 dB.1 This
SNR is also shown in Figs. 7 and 8. Comparing now to 18.9 dB,
the bidirectional stack decoder is 1.2 dB from the required SNR
to achieve this data rate under uniform input constraint. As dis-
cussed earlier, the implementation loss due to framing is 0.2 dB.
This loss relates only to the decoder implementation and not to
the properties of the lattice. Also, as discussed earlier, the re-
quired SNR is further shifted by 0.3 dB due to the finite frame
length of and the finite FER of . Taking these
into account, the proposed lattice has a potential to work within

dB from channel capacity. This is a strong indication that the

1Note that the capacity loss due to the uniform distribution constraint is only
1.1 dB, as at these SNRs this capacity loss has not yet reached its asymptotic
value of 1.53 dB

5216 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

Fig. 9. Average and maximal number of computations for the stack decoder. Each curve is labeled with the corresponding maximal stack length.

Fig. 10. Average and maximal number of computations for the bidirectional stack decoder. Each curve is labeled with the corresponding maximal stack length.

proposed lattice is good for AWGN coding in the sense defined
in [38] and [18].

Fig. 7 also shows the union bound estimate (13) and the
truncated upper bound (14) of Section VI, which were calcu-
lated based on the lattice points that were presented on Fig. 6.
These are neither upper or lower bounds, but approximations
to the probability of error, which should become more accu-
rate as SNR increases. It can be seen that the approximations
are indeed in good match with the leftmost empirical error
probability curve, that corresponds to bidirectional decoding
with stack length of . The other curves are shifted due to
implementation-dependent errors (e.g., CPL events), where
the theoretical bounds refer to an ideal ML decoder, which is
approximated by the leftmost curve.

Turning to complexity, we shall now examine the computa-
tional and storage requirements of the decoders. The storage is
determined by the maximal stack length, where the computa-
tional complexity can be defined by the average and maximal
number of computations per symbol. For this purpose, a com-
putation is defined as the processing of a single stack entry. The
number of computations per a specific symbol is calculated by
dividing the total number of computations for the block that con-
tains this symbol, by the number of symbols in the block. The
maximum and average over all the 20 000 blocks of each simu-
lation are defined as the maximal and average number of com-
putations per symbol, respectively.

Fig. 9 shows the average and maximal number of compu-
tations for the stack decoder, where Fig. 10 shows it for the

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5217

Fig. 11. Nested lattice shaping gain for 64-QAM and 4-QAM constellations.

bidirectional stack decoder, for various maximal stack lengths.
Combining the results from Figs. 8 and 10, we can see that
in order for the bidirectional stack algorithm to work at FER
of at 2.3 dB from capacity, we need a stack of size .
The average number of computations is 80 computations per
symbol, which is certainly a practical number (similar to a
64-states Viterbi decoder, or to an LDPC code with average
node degree of 10 that performs 8 iterations). However, the
maximal number of computations per symbol is 15 000—more
than two orders of magnitude than the average. Therefore,
such a decoder can be implemented with reasonable average
complexity, but from time to time it will have large and unpre-
dictable delays for the worst-case blocks.

A more practical scheme might be a bidirectional stack de-
coder with maximal stack length of . FER of can be
achieved for SNR of 20.8 dB (3 dB from capacity). The av-
erage number of computations per symbol is only 3 computa-
tions/symbol, where the maximum is 120. This is certainly a
practical scheme, where the effect of nonpredictable decoding
delays still exists, but it is much less severe.

Note that the phenomenon of computational peaks also ex-
ists in modern iterative decoders, such as LDPC codes or Turbo
codes. For these codes, it is common to have a “stopping cri-
terion,” which stops decoding when the detected data is a valid
codeword. In this case, most of the time the decoder performs a
small number of iterations (e.g., 1–2), and from time to time it
needs to perform more iterations (e.g., 8–16). This will result in
non-uniform processing complexity. However, the “peak-to-av-
erage” of the number of computations is still significantly larger
for the proposed sequential decoders.

All the results so far were presented for Tomlinson-Ha-
rashima shaping. With this scheme, the codeword elements
are uniformly distributed, so no shaping gain can be attained
relative to uncoded QAM. However, such shaping gain can
be achieved using, e.g., nested lattice shaping described in
Section V-C. Specifically, we used the following algorithm.
It starts from the first symbol of , and sequentially continues
symbol-by-symbol. The input at stage is a list of up to
candidate sequences for (where for the list

is initialized with a single empty sequence). Each of the
sequences is extended with all possible values for , and each
extended sequence is assigned a score of , using
the ’s that correspond to . The scores are sorted,
and the sequences with smallest score are kept as input to
the next stage. When each sequence is extended, only a finite
range of values should be checked, as outside this range the
energy of will be large enough such that this path can be
immediately ignored. is finally chosen as the sequence with
smallest score after processing of the last symbol.

The storage and computational complexity of this shaping al-
gorithm is . The storage and processing delay can be
improved if instead of waiting for the last stage, the value of
is determined at stage , where is the decision delay. If

is large enough, the shaping gain reduction will be minimal,
where storage reduces from to . Note that for
an -algorithm with , nested lattice shaping reduces
to Tomlinson-Harashima shaping, where for , the al-
gorithm approaches a full exponential tree search that finds the
exact solution for . Fig. 11 depicts the average energy when the
algorithm above is used compared with the energy of uncoded
QAM symbols. For (Tomlinson-Harashima shaping) the
energy penalty is relative to uncoded -QAM,
which is 0.07 dB for 64-QAM and 1.25 dB for 4-QAM. As

increases, the shaping gain increases and reaches 1.4 dB for
64-QAM, which is close to the theoretical limit. For 4-QAM,
the energy penalty of the Tomlinson-Harashima scheme is com-
pletely compensated, with additional gain of 0.2 dB. Note that
most of the shaping gain can be achieved with a practical
value of 100 (1.25 dB gain for 64-QAM and 0 dB for 4-QAM).

Unfortunately, the computational complexity of the stack and
the bidirectional stack decoders is much larger when nested lat-
tice shaping is used, compared to the case where Tomlinson-
Harashima shaping is used. The reason is that for the Tom-
linson-Harashima scheme, “x-range testing” can be used to di-
lute the stack, as described in Section VII-B. Therefore, in addi-
tion to the increased complexity at the encoder side, nested lat-
tice shaping has also a complexity penalty at the decoder side.
This is a topic for further study.

5218 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

IX. SUMMARY

This paper discusses in depth convolutional lattice codes and
their corresponding lattices, and provides several theoretical and
practical contributions. Perhaps one unexpected observation is
that these lattices, which are essentially lattices whose gener-
ator matrix is a Toeplitz band matrix, can have large coding gain
with small band size (i.e., by convolving an integer sequence with
a short FIR filter). By combining lattice generation with lattice
shaping techniques, inspired by signal processing, the paper pro-
vides means to design lattice codes, with finite shaped power, di-
rectly in the Euclidean space. This elegant and natural concept
has been followed up in designing other lattice codes, such as the
low density lattice codes, without the need to go through finite al-
phabet error correcting codes. More specifically to convolutional
lattice codes, the paper provides means to bound the error proba-
bility in lattice decoding that may be used in other contexts.

The practical contributions of this paper for communication
over continuous-valued channels, such as the AWGN, should
also be mentioned. The paper provides a computationally effi-
cient sequential decoder for convolutional lattice codes. Using
this decoder the channel cut-off rate can be attained. This perfor-
mance should not be considered lightly, as it is attained with low
delay, and it outperforms trellis coded modulation techniques
with similar complexity. For better performance the paper pro-
poses a bidirectional decoder, that with large enough memory
can attain the capacity at dB, even when using a hyper-cu-
bical shaping region rather than the optimal spherical shaping
region. This part of the paper provides a chance to revisit and en-
hance aspects of convolutional codes, which moved away from
the spotlight in the recent years.

Clearly, there is room for further research and analysis of these
codes. Better generating filters may be found. The decoding al-
gorithms can be improved. Theoretically, the goal is to show that
convolutional latticecodes attaincapacity for theAWGNchannel
(probablywith largefilteror“constraint” length). Inaddition, fur-
ther research should analyze and bound the error performance, at
least at the level encountered in the classical analysis of convolu-
tional codes. Finally, a challenging topic is to examine the codes
over channels other than the AWGN, e.g., fading channel.

APPENDIX A
THE DETERMINANT OF FOR LARGE LATTICE DIMENSION

We would like to show that as ,
where is a Toeplitz matrix as in (2) whose nonzero column
elements are the impulse response coefficients of a monic min-
imum phase filter with . is a
Hermitian Toeplitz matrix, whose elements are the autocorrela-
tion coefficients of the filter’s impulse response

where is assumed zero for or .
Denote the eigenvalues of for lattice dimension by

for . We then have

(18)

Applying [27, Th. 4.1] to , we get

(19)

where is the Fourier transform of , i.e.,
. It is well known (e.g., [37, Ch. 12])

that the right-hand side (RHS) of (19) equals 0 if is of the
form

(20)

with and all less than unity, such that the fac-
tors and correspond to zeros and

poles inside the unit circle, and the factors and
correspond to zeros and poles outside the unit

circle. In our case, is monic, causal and minimum phase so
it is of the form , which is a special
case of (20). Substituting (18) in (19), we finally get

which is the desired result. Note that this result does not hold, in
general, if is not of the form (20). For example, if

with , the RHS of (19) equals instead
of 0.

APPENDIX B
FINDING THE LATTICE POINTS INSIDE A SPHERE

Consider a convolutional lattice code with a given monic,
causal, and minimum-phase generating filter , whose im-
pulse response is . We shall now present an algo-
rithm that finds all the lattice points whose squared norm is
below a given for a lattice dimension of . The flowchart
of the algorithm is shown in Fig. 12. Basically, it develops a tree
of all possible integer sequences , and truncates tree
branches as soon as it can identify that all the corresponding lat-
tice points will have squared norms above . The tree
is searched in a Depth First Search (DFS) manner, which can be
easily implemented using recursion techniques.

Due to the shift invariance of the convolution operation, all
lattice points that correspond to shifts of the nonzero portion
of their corresponding integer vectors will have the same norm.
Therefore, it is more efficient to find only a single lattice point
from each such group. This can be done by searching only for
the nonzero portion of the corresponding integer vector, and
forcing it to start in the first symbol by allowing only nonzero
values for . will be allowed to be 0 for , but whenever
a sequence of ’s is recorded as the nonzero portion of a lattice
point, it is verified that the last in the sequence is not zero.

The basic step of the algorithm is a “candidate preparation”
step, where a list of candidate integers is prepared for ,
given the values of , such that the squared norm of
the resulting lattice point (and its possible extensions) can still
be lower than . In order to build the list, the sequence

is first convolved with the generating filter, yielding

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5219

the sequence . Since is causal, the first ele-
ments of will be the first components of the resulting
lattice point, regardless of the values that will be chosen for

. Since is monic, the ’th com-
ponent of the lattice point will equal . A necessary
condition for the squared norm of the lattice point to be less than

is that the squared sum of its first components is
less than , i.e.

(21)

A candidate list for can then be built according to (21).
The computational complexity of the tree search can be fur-

ther improved by using a modified bound in (21) instead
of , where . The reason is that
the left-hand side (LHS) of (21) does not include the “convo-
lution tail,” whose contribution to the squared norm is at least

(the minimal squared value for the last symbol of the con-
volution, since the minimal value for a nonzero integer is 1).
This will decrease the size of the candidate lists and thus reduce
the total tree search complexity.

As noted above, we would like to find a single representative
from each group of shifted lattice points. Also, for each lattice
point there will be 4 lattice points with the same norm that cor-
respond to multiplications of the corresponding integer vector
by and , and we would also like to record only a single
point out of these four. In order to do that, the candidate list
for the first integer is built in a different manner than for the
other integer symbols. For , the candidate list contains all pos-
sible complex integers whose squared magnitude is smaller than

, diluted as follows. First, as noted above, eliminating
the zero symbol from the candidate list for will guarantee
that shifted versions of the same integer vector will not be en-
countered. Also, if a complex integer is in the candidate list
for , we can dilute from the list the values , and ,
since the resulting tree branches will correspond to the same in-
teger vectors, up to multiplication by the constants , , ,
respectively.

The flow of the algorithm, as shown in Fig. 12, is as follows.
The algorithm starts by building a candidate list for the first error
symbol . Then, it starts passing on this list. For each possible
value of , it builds a candidate list for , and so on. For a
general tree node at depth , the values of
are determined by the path that leads to this tree node, and the
algorithm constructs a candidate list for . Whenever the
candidate list for is empty (immediately at its generation,
or after finished passing on it) or the sequence length exceeded
the lattice dimension , the algorithm steps back one step and
turns to the next candidate for . When the candidate list for

is finally exhausted, the algorithm terminates. This way, the
whole tree is searched in a DFS manner.

In each tree node, The algorithm checks if the sequence
ends with zeros, in which case it skips to the next

element in the list. Such a sequence can be skipped because
continuing this sequence will result in an integer vector with a
gap of zeros in its nonzero portion. For such an integer vector
, the corresponding lattice point is a sum of two other

lattice points , , where corresponds to the first part of
the nonzero portion of (i.e., before the gap of zeros) and
corresponds to the second part. The nonzero components of
and are at non-overlapping indices, because the convolution
“tail” of the filtered first part of the nonzero portion of does
not overlap the filtered second part due to the gap of zeros. If
only the shortest lattice point is required, such a point is surely
not the shortest lattice point, since both and are shorter
than . If all the lattice points with squared norm below
are required, such a point will have squared norm larger than

, so it can be skipped if . Furthermore,
even if , such a point is not Voronoi-relevant,
and is therefore not needed for the error bounds of Section VI,
as explained in Appendix F.

During the search process, it is required to record all the
integer sequences for which the squared norm of the resulting
lattice point is smaller than . Therefore, at each tree
node, after constructing the candidate list for , the algo-
rithm checks if the sequence , zero padded to dimension

, is a lattice point with squared norm less than . This is
done by summing over all the components of the convolution
of with the generating filter, including the “convolution
tail,” which was calculated as part of the candidate list construc-
tion step. If the sum-of-squares of the convolution output is less
than , the sequence is recorded, unless its last symbol is
zero (since we want to record only the nonzero portion of the
integer vector that corresponds to the lattice point, as explained
above. If the last integer is 0, then either the nonzero portion of
this sequence was already recorded, or it may be recorded in
the future if additional nonzero symbols will be added to it).

Note that instead of calculating the convolution and
the partial sum at each tree node, a simple recursive
update can be applied to the results of the calculations at the
parent tree node, thus reducing the computational complexity.
Also, instead of actually storing the candidate lists for the ’s,
the appropriate candidate can be calculated at each node where
only an index needs to be stored.

Note also that if only the minimal distance of the code needs
to be found, the computational complexity of the algorithm can
be reduced by dynamically updating : whenever a lattice
point whose squared norm is smaller than is recorded,

is updated to the squared norm of this lattice point.
We finally note that the complexity of the algorithm of Fig. 12

can be further improved by using a “backward-forward” ap-
proach. With this approach, the algorithm first builds a tails-
database, which stores all the possible tail sequences whose Eu-
clidean distance is lower than . This can be done by ap-
plying the algorithm of Fig. 12 backwards in time. The algo-
rithm then develops the search tree forward in time, but the con-
dition for keeping an integer sequence in the tree is that either
its squared norm is smaller than , or that the last

elements of the integer sequence coincide with the first ele-
ments of a sequence from the tails database, in which case their
concatenation may yield a lattice point whose squared norm is
below . This way, the effective search radius of the for-
ward search is instead of , which may re-
sult in significant complexity reduction even for relatively small
values of .

5220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

Fig. 12. Algorithm for finding the lattice points inside a sphere with radius � .

APPENDIX C
SYMMETRY PROPERTIES OF THE SQUARED MINIMUM DISTANCE

Assume that filtering an integer sequence with the filter
yields the sequence . Then, it

can be easily seen that filtering the integer sequence with
will yield the sequence .

Therefore, the lattices that correspond to and are
essentially the same lattice, except for different mapping of in-
teger vectors to lattice points and multiplication of the lattice
generator matrix by a unitary matrix, which is equivalent to
rotation and reflection. Using induction, the same argument is
true for the filters and

. As a result, the two lattices that cor-
respond to and have the same minimum distance,
so .

In the same manner, it can be easily seen that filtering the se-
quence with will yield the
sequence (where denotes the complex conjugate of).
Therefore, the lattices that correspond to and are
essentially the same lattice, except for different mapping of in-
teger vectors to lattice points, multiplication of the lattice gener-
ator matrix by a unitary matrix, and complex conjugation, which
are equivalent to rotation and reflection. Using induction, the
same argument is true for the filters , as defined above,
and . As a result, the two

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5221

lattices that correspond to and have the same min-
imum distance, so .

APPENDIX D
TERMINATING THE SHAPING OPERATION

Three solutions are proposed for controlling the energy of the
“convolution tail” . The first solution is to con-
tinue the filtering and shaping operations for additional sym-
bols, assuming , and calcu-
late and accordingly. Then,
the values of will be transmitted in addition to
the values of . These values should be transmitted such that
the probability of error in detecting them is negligible, compared
to regular data transmission, e.g., by using a smaller (sparser)
QAM constellation or a different coding scheme. Assuming that

are received without errors, their contribution
to the values of can be subtracted, and the result is equiva-
lent to shaping and encoding a finite sequence of information
integers.

In the second proposed solution, the encoder performs the
shaping and filtering operations in a continuous manner, i.e., it
shapes and encodes an infinite sequence of ’s. In addition to
transmitting the resulting ’s, values of the shaped integers

will be transmitted once every symbols (i.e., the first
group of transmitted values will be , the
second group will be and so
on). Similarly to the first solution above, these values should
be transmitted such that the probability of error in detecting
them is negligible. Knowing the first and last values of for
a block of symbols, their contribution to the values of

can be subtracted, and the result is equivalent to shaping and
encoding a finite sequence of information integers.

For both solutions above, transmitting the additional values
is additional overhead that will reduce code rate, but the impact
becomes negligible as block size increases.

The third proposed solution avoids the extra overhead by
doing the same as in the first solution, but without transmit-
ting the values of . The decoder will then
need to reconstruct additional symbols whose values are

in addition to
. The problem is that the squared distance of the

resulting code may be less than the squared distance of the
lattice generated by (2), since the convolution operation is
not properly terminated. However, the additional symbols

have high noise
immunity, since the spacing of the equivalent constellation is
higher by a factor of than that of the regular symbols .
The performance of this scheme will thus be determined by the
combined effect of possibly reduced and higher constella-
tion spacing for the additional symbols, and requires further
research.

As an example, consider the second proposed scheme, where
shaping and encoding are done in a continuous manner, and
values of are transmitted once every symbols. Con-
sider the generating filter for
and (the third generating filter of Table I),
combined with Tomlinson-Harashima shaping (Section V-A).
Simulation of the Tomlinson-Harashima shaping scheme for the

chosen generating filter shows that when the information sym-
bols belong to a 64-QAM constellation, the real and imagi-
nary parts of the ’s have a dynamic range of 17 bits (each).
Therefore, bits are required to store
consecutive values of . However, the narrow band nature of
the sequence , as pointed out in Section V-A, can be utilized
to “compress” these values. Instead of transmitting we
can transmit the “compressed” values where ,

is the prediction error of predicting from using the pre-
diction error filter , i.e., , and is the
prediction error of predicting from , using the prediction
error filter . The dynamic range of is still 17 bits,
but the dynamic range of and is now 12 and 7 bits, respec-
tively. Therefore, the total number of bits required to store 3 con-
secutive ’s is now only bits. In order to
protect these ’s, uncoded 8-QAM modulation is used for their
transmission. This way, the ’s are protected by approximately
9 dB relative to uncoded 64-QAM. Since the gap to capacity for
uncoded transmission at bit error rate (BER) of is approx-
imately 9 dB [24], the uncoded ’s will be more protected than
the coded data, so the error rate due to badly detected ’s is
negligible. Sending 72 bits requires 24 8-QAM symbols. If the
codeword length is =2000, as used in Section VIII, then the
effect of the additional 24 symbol on code rate is negligible.

APPENDIX E
GENERALIZATIONS FOR NONMINIMUM-PHASE AND ARMA

GENERATING FILTERS

1) Nonminimum-Phase Filter Patterns: So far, we have re-
stricted the generating filter to be a minimum-phase filter,
in order for the recursive loops of the various shaping methods
to be stable (Section V). We shall now show how to extend
the concept to nonminimum-phase filters of the form

, where is a monic
minimum phase filter and is a monic
maximum phase filter with and all less than unity. From

Appendix A, it can be seen that we still have
for large , as required (Section III), where the restriction

in (2) is now removed. We can then deploy convolu-
tional lattice coding, combined with one of the proposed shaping
methods, with the generating filter ,
which is a minimum phase filter, and then apply an allpass filter

to the encoded signal. The allpass filter
does not change the signal power level or its power spectrum.
Therefore, this scheme generates a lattice which is based on the
generating filter , which is not minimum-phase. As the re-
cursive loops of the various shaping and encoding schemes work
with the filter , which is minimum-phase, stability is
ensured.

Note that convolving the filter pattern with an allpass filter
is equivalent to multiplying a lattice generator matrix by a uni-
tary matrix, which is equivalent to rotation and reflection of the
lattice in Euclidean space, that do not change the coding-related
lattice properties. Since we can transform a nonminimum-phase
filter to a minimum-phase filter by allpass filtering, we should
not expect non-minimum-phase filter patterns to have advan-
tage over their minimum-phase equivalents when the AWGN

5222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

Fig. 13. Combining convolutional lattice coding with pre-equalization.

channel is considered. However, in non-AWGN channels, such
as in fading channels and in impulse noise channels, mixed-
phase channels may be advantageous since their impulse re-
sponse may be longer, thus allowing better time-diversity.

2) Autoregressive, Moving-Average (ARMA) Filter Pat-
terns: Thus far, we have described codes which employ FIR
generating filters, but the convolutional lattice code concept
can be easily extended to ARMA generating filters. Suppose
that we want to design a code with an ARMA generating filter

, where and

are monic invertible minimum phase
filters. The encoding operation will then be

(22)

For Tomlinson-Harashima shaping, the shaping operation is

It can be easily seen that choosing

results in . The other shaping methods of Section V
can be extended in a similar manner. ARMA generating filters
can be particularly useful when convolutional lattice coding is
combined with channel preequalization, as described in the next
subsection.

3) Combining Convolutional Lattice Coding With Pree-
qualization: Assume that coding should be used for transmis-
sion through a communications channel which introduces ISI.
Convolutional lattice coding can be seamlessly combined with
channel preequalization, by designing the encoder’s filter so that
its convolution with the channel impulse response will be the de-
sired convolutional lattice code generating filter, possibly up to
a gain factor. However, this would work only if the channel is
a minimum phase filter, since otherwise the encoder’s filter is
nonminimum phase and the recursive loops of its shaping algo-
rithms become unstable. In order to avoid this problem, an all-
pass filter can be applied to the transmitted signal, that converts
the channel into a minimum phase system (this is a common
procedure in equalization of digital communications channels
[24]). Let the channel be , where
is a gain factor, is a monic minimum phase filter, and

is a monic maximum phase filter, as defined in Section
A. Assume further that is stable and invertible. In order

to transform the channel into its minimum phase equivalent, we
apply the filter to the channel input,
transforming the combined channel into a minimum
phase system. Since is an allpass filter, i.e., ,
it does not affect the transmitted signal’s power or power spec-
trum. We then apply the shaping and encoding operations using
the monic minimum phase filter , where

is the desired convolutional lattice code generating filter.
The resulting scheme is illustrated in Fig. 13. It can be easily
seen that the linear system that relates to the channel output,

, folds into the desired pattern , multiplied
by the channel gain . Therefore, the receiver can employ a de-
tector that is optimized for an ideal (non-ISI) channel, and the
error performance will be the same as in an ideal channel with
a gain of .

APPENDIX F
SORTING THE VORONOI-RELEVANT LATTICE POINTS

Assume that for a given lattice with a generator matrix , we
have found all the lattice points whose squared norm is less than

, and would like to know which of them are Voronoi-rel-
evant lattice points, as defined in Section VI. The proposed al-
gorithm is based on the following criterion [1]. A lattice point
is a Voronoi relevant lattice point if and only if its midpoint
is not a lattice point, and this midpoint has exactly two nearest
lattice points, which are the origin and . An equivalent con-
dition is that a hypersphere with radius , centered at ,
should contain only two lattice points, which are the origin and

. A further equivalent condition is that a hypersphere with ra-
dius , centered at , should contain only two lattice points
whose corresponding integer vectors have even integer compo-
nents, which are the origin and . Due to the linearity of the
lattice, this sphere can be searched for lattice points by adding
to all the lattice points whose norm is less than or equal to ,
and then checking if the result corresponds to an integer vector
with even components. This suggests the following algorithm.

Input: – All lattice points whose

squared norm is smaller than , sorted by

ascending norm.

– A list of corresponding integer

vectors such that .

Output: – Flag bits such that if is

Voronoi-relevant and otherwise.

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5223

for to

;

;

while

if

;

end

;

end

if

;

else

;

end

end

This formulation is for a general lattice, assuming that the list
of lattice points includes all the points in a sphere with radius

. For example, if is in the list, should also be in
the list. However, the list of lattice points that is generated by the
algorithm of Appendix B includes only a single representative
from each group of lattice points whose corresponding integer
vectors have the same nonzero portion, up to a possible shift,
and up to multiplication by or . It can be seen that if any
single member of such a group of lattice points is Voronoi-rel-
evant, all the members of the group are also Voronoi-relevant.
Then, the following modifications to the above algorithm are
required. First, the condition is replaced by

or , where denotes
the nonzero portion of (i.e., the portion that starts from
the first nonzero component and ends with the last nonzero com-
ponent). This takes into account all the lattice points which are
shifted versions of the given lattice points, as well as the lattice
points that correspond to multiplication by (multiplication
by is already taken care of by the operation itself).
In case and have different lengths, their sum is undefined
and the condition is evaluated as “False.” Second, the condi-
tion for marking a lattice point as non-
Voronoi relevant should be changed to ,
since only one point out of and is in the input list.

A special type of non-Voronoi relevant lattice points for con-
volutional lattice codes, that can be eliminated already during
the operation of the search algorithm of Appendix B, are lattice
points that correspond to integer vectors whose nonzero portion
contains a subportion of consecutive zeros. For such an in-
teger vector , the corresponding lattice point is a sum
of two other lattice points , , where corresponds to the
first part of the nonzero portion of (i.e., before the gap of

Fig. 14. An example of the heap data structure.

zeros) and corresponds to the second part. The nonzero com-
ponents of and are at nonoverlapping indices, because the
convolution “tail” of the filtered first part of the nonzero portion
of does not overlap the filtered second part due to the gap of
zeros. As a result, is orthogonal to , and can
not be a Voronoi-relevant lattice point, since it can be easily seen
that its midpoint has 4 nearest lattice points, which are the
origin, , and , in contradiction to the above criterion.

See [50] for a related algorithm that uses a list of Voronoi-
relevant vectors for finding the nearest lattice point.

APPENDIX G
IMPLEMENTATION OF THE HEAP-BASED STACK DECODER

At each step of the stack decoder, the path with best score in
the stack is extended to all its successors, and then deleted from
the stack. The successors then enter the stack. In principle, an
infinite stack is required, as the number of paths continuously
increases. Practically, a finite stack must be used, so whenever
the stack is full, the path with worst score is thrown away. There-
fore, a practical stack decoder should find at each step the paths
with best score and worst score in the stack. An efficient imple-
mentation of the stack algorithm can be based on the heap data
structure [14]. A heap is a data structure that stores the data in
a semi-sorted manner (See an example in Fig. 14). Specifically,
data is arranged in a binary complete tree (i.e., all the levels of
the tree are populated, except for the lowest level, whose pop-
ulated elements are located consecutively at the leftmost loca-
tions). The value of each node is larger or equal to the value of its
successors. Practically, the heap is stored in a linearly addressed
array, without any overhead (i.e., the root of the tree is stored in
location 0 of the array, the two elements of the second level are
stored in locations 1 and 2, the four elements of the third level
at locations 3,4,5,6, and so on). The parent node of the element
at location of the array is stored at location , and its two
children are at locations and , where denotes the
largest integer smaller than . In order to insert a new element
to the stack, the element is initially inserted at the lowest level
of the tree, adjacent to the rightmost current element. Then, the
new element is moved up the path toward the root, by succes-
sively exchanging its value with the value in the node above. The
operation continues until the value reaches a position where it
is less than or equal to its parent, or, failing that, until it reaches
the root node. Extracting the maximum element is simple, as the
maximum is always at the root of the heap. However, in order
to maintain a complete tree, the following procedure is used to
delete the maximal element from the stack. First, the root el-
ement is deleted and replaced by the rightmost element of the
bottom level of the tree. Then, its value is moved down the tree
by successively exchanging it with the larger of its two children.

5224 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

The operation continues until the value reaches a position where
it is larger than or equal to both its children, or, failing that, until
it reaches a leaf.

It can be easily seen that for a stack of size , extracting the
minimum or inserting a new element requires oper-
ations. As noted above, a practical implementation of the stack
algorithm requires to efficiently extract both the minimal and the
maximal elements at each step. The deap [11] or min-max heap
[5] are modified versions that allow to extract either the max-
imum or the minimum with operations. These data
structures are therefore suitable to hold the stack; otherwise, at
least operations may be required to extract the minimum
or the maximum, which may dominate the computational load
of the algorithm.

For decoding of convolutional lattice codes, each entry in the
stack should include a score (by which the heap is organized)
and a list of symbols that define the path in the code tree.
As the codeword may be long (e.g., 1000 symbols), storing the
path elements requires a large amount of memory. However, this
amount can be reduced as follows. In general, a path in the stack
starts in the root of the code tree. Then, it follows the correct
path for several symbols, and diverges from it at a certain point.
As a path diverges from the correct path, it begins to accumulate
score at a much higher average rate than the correct path. There-
fore, paths that diverged from the correct path for many symbols
will have much worse score than the correct path, and will be
thrown away from the stack with high probability. As a result,
most of the paths in the stack will have a common start, which
equals the first symbols of the correct path, and will differ only at
the last few symbols. This observation also holds for Viterbi de-
coding of convolutional or trellis codes, where instead of taking
a decision for a data symbol only after the decoder reached the
end of the frame, decisions are taken by backtracking the best
path for a finite number of symbols to the past, till a point where
the paths are assumed to converge. The same can be done here,
where each entry in the stack will only hold the several last sym-
bols of the path, and decision is taken for the older symbols. The
stored length should be chosen such that the additional error
probability due to these early decisions will be negligible.

However, this method is still not optimal, as most of the paths
diverged from the correct path for a small number of symbols,
but equal storage is allocated for all paths according to the worst
case paths that might have diverged for a larger period. This can
be improved as follows. Instead of storing a separate path for
each stack entry, all the paths are stored together in a “symbol
memory,” using linked lists of data symbols. Each entry of the
symbol memory stores a data symbol , a link to another entry,
and the total number of other entries that are linked to this entry.
When generated, each score entry in the stack is linked to the last
(newest) symbol of the corresponding path, which is stored in the
symbol memory. This symbol is linked to the previous symbol in
the path, and so on. The path of each stack entry can be simply fol-
lowed by backtracking the links until the root. In order to main-
tain this database, whenever a path enters the stack after deletion
of its parent, a new data symbol is added to the symbol memory,
storing the last data symbol of the new path, and a link to the last
symbol of the path of its parent entry (which is not deleted from
the symbol memory when the parent node is deleted from the

stack). A symbol is deleted from the symbol memory only when
no other symbol is linked to it. This way, the minimal number of
symbols is stored at each point, and memory usage is optimized.
Similarly to the previous approach, storage should be allocated
to the symbol memory such that the additional error probability
due to symbol memory overflow is negligible.

APPENDIX H
DERIVATION OF THE FANO METRIC

Consider the following transmission model through a
discrete, memoryless channel whose input and output are
complex numbers in . The transmission uses a variable
length code whose codewords have lengths

, respectively. Let denote the th coor-
dinate of . Let be the set of all possible
complex values for the coordinate , . Let
denote the cardinal number of , and let . To
each codeword , having proba-
bility , a random tail is appended,
where , producing the word

, which is sent over
the channel. It is assumed that are independent of each
other and of , for . Let denote
the probability distribution function of . As explained in
[35], this decoding problem is essentially the same problem
of choosing the best path in each step of the stack algorithm,
where the stack contains paths of different lengths.

By independence,
. Let

denote the received word. The joint probability distribution of
appending a tail to a codeword and receiving is

(23)

Summing over all random tails gives the marginal distribution

(24)

where

(25)

Given , the maximum a posteriori decoding rule is to choose
which maximizes . Equivalently

can be maximized, as the denominator is independent of .
Taking logarithms, the final statistic to be maximized by the
optimum decoder is

(26)

SHALVI et al.: SIGNAL CODES: CONVOLUTIONAL LATTICE CODES 5225

Interestingly, the statistic for each codeword depends only on
that portion of the received word having the same length as
the codeword.

We can now derive the Fano metric for the decoding of con-
volutional lattice codes transmitted through the AWGN channel
with noise variance . For simplicity, we shall start with real
valued convolutional lattice codes, and then extend the results
to the complex case. Assume that the data symbols are

-PAM symbols. There are possible symbols, so the a-priori
probability of a codeword of length is

(27)

The numerator of the left term inside the sum of (26) is

(28)

In order to calculate the denominator, we shall assume that
Tomlinson-Harashima shaping is used. In this case, the set ,
as defined above, is a finite set of values, uniformly spread in the
interval . We shall assume that is large, such that we
can approximate the sum of (25) by an integral

(29)

where . Note that the integral of (29)
is a convolution between a rectangular pulse and a Gaussian. As-
suming (high SNR), the Gaussian is much narrower than
the rectangular pulse, so the convolution result can be approxi-
mated by a rectangular pulse with height , except for values
of that are relatively close to the edges of the pulse at . We
can then simply approximate (29) by the constant , assuming
that the probability of being near the edges can be neglected.
We then get

(30)

Substituting (27), (28), and (30) in (26) and organizing terms,
we finally get

(31)

where

(32)

The extension of these results to complex convolutional lat-
tice codes with -QAM input constellation and complex noise
variance of is straightforward. Instead of (27), (28), and (30),
we have , and

, respectively (where we have assumed that the
Tomlinson-Harashima precoding causes the real and imaginary
parts to be independent of each other). Substituting in (26), we
get (31) again, where now we have

(33)

ACKNOWLEDGMENT

Support and discussions with E. Weinstein and D. Forney are
gratefully acknowledged.

REFERENCES

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Trans. Inf. Theory, vol. 48, pp. 2201–2214, Aug. 2002.

[2] S. A. Altekar, M. Berggren, B. E. Moision, P. H. Siegel, and J. K.
Wolf, “Error-event characterization on partial-response channels,”
IEEE Trans. Inf. Theory, vol. IT-45, no. 1, pp. 241–247, Jan. 1999.

[3] J. B. Anderson, “On the complexity of bounded distance decoding for
the AWGN channel,” IEEE Trans. Inf. Theory, vol. IT-48, no. 5, pp.
1046–1060, May 2002.

[4] E. Arikan, “Channel polarization: A method for constructing ca-
pacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Trans. Inf. Theory, vol. IT-55, no. 7, pp. 3051–3073,
Jul. 2009.

[5] M. Atkinson, J. sack, N. Santoro, and T. Strothotte, “Min-Max
heaps and generalized priority queues,” Commun. ACM, vol. 29, pp.
996–1000, 1986.

[6] T. Aulin, N. Rydbeck, and C. W. Sundberg, “Continuous phase modu-
lation – Part II: Partial response signaling,” IEEE Trans. Commun., pp.
210–225, Mar. 1981.

[7] T. Aulin, “Breadth-first maximum likelihood sequence detection: Ba-
sics,” IEEE Trans. Commun., vol. 47, no. 2, pp. 208–216, Feb. 1999.

[8] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE Trans. Inf.
Theory, vol. 20, pp. 284–287, 1974.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int.
Conf. Commun., 1993, pp. 1064–1070.

[10] A. R. Calderbank and N. J. A. Sloane, “New trellis codes based on
lattices and cosets,” IEEE Trans. Inf. Theory, vol. IT-33, pp. 177–195,
Mar. 1987.

[11] A. Carlsson, “The deap: A double-ended heap to implement double-
ended priority queues,” Inf. Process. Lett., vol. 26, pp. 33–36, 1987.

[12] J. H. Conway and N. J. A. Sloane, “A fast encoding method for lat-
tice codes and quantizers,” IEEE Trans. Inf. Theory, pp. 820–824, Nov.
1983.

[13] J. H. Conway and N. J. Sloane, Sphere Packings, Lattices and
Groups. New York: Springer, 1988.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: The MIT press, 2001.

[15] R. de Buda, “The upper error bound of a new near-optimal code,” IEEE
Trans. Inf. Theory, vol. IT-21, pp. 441–445, Jul. 1975.

[16] R. de Buda, “Some optimal codes have structure,” IEEE J. Sel. Areas
Commun., vol. 7, pp. 893–899, Aug. 1989.

[17] U. Erez and R. Zamir, “Achieving 1/2 ����� � ��	
 on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, pp. 2293–2314, Oct. 2004.

[18] U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (al-
most) everything,” IEEE Trans. Inf. Theory, vol. 51, pp. 3401–3416,
Oct. 2005.

[19] M. V. Eyuboglu and S. U. H. Qureshi, “Reduced-state sequence
estimation with set partitioning and decision feedback,” IEEE Trans.
Commun., pp. 13–20, Jan. 1988.

[20] G. D. Forney Jr., “Maximum likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,” IEEE Trans.
Inf. Theory, pp. 363–378, May 1972.

[21] G. D. Forney Jr., “Coset codes—Part I: Introduction and geometrical
classification,” IEEE Trans. Inf. Theory, pp. 1123–1151, Sep. 1988.

[22] G. D. Forney and M. V. Eyuboglu, “Combined equalization and coding
using precoding,” IEEE Commun. Mag., vol. 29, no. 12, pp. 25–34,
Dec. 1991.

5226 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

[23] G. D. Forney Jr., “Trellis shaping,” IEEE Trans. Inf. Theory, vol. IT-38,
no. 2, pp. 281–300, Mar. 1992.

[24] G. D. Forney Jr. and G. Ungerboeck, “Modulation and coding for
linear Gaussian channels,” IEEE Trans. Inf. Theory, pp. 2384–2415,
Oct. 1998.

[25] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[26] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[27] R. M. Gray, “On the asymptotic eigenvalue distribution of Toeplitz ma-
trices,” IEEE Trans. Inf. Theory, vol. 18, pp. 725–730, Nov. 1972.

[28] I. M. Jacobs and E. R. Berlekamp, “A lower bound to the distribution
of computation for sequential decoding,” IEEE Trans. Inf. Theory, vol.
IT-13, pp. 167–174, 1967.

[29] S. Kallel and K. Li, “Bidirectional sequential decoding,” IEEE Trans.
Inf. Theory, vol. 43, pp. 1319–1326, Jul. 1997.

[30] B. Kurkoski and J. Dauwels, “Reduced-memory decoding of low-den-
sity lattice codes,” IEEE Commun. Lett., vol. 14, no. 7, Jul. 2010.

[31] R. Laroia, S. A. Tretter, and N. Farvardin, “A simple and effective pre-
coding scheme for noise whitening on intersymbol interference chan-
nels,” IEEE Trans. Commun., vol. 41, no. 10, pp. 1460–1463, Oct.
1993.

[32] R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of
multidimensional constellations,” IEEE Trans. Inf. Theory, vol. 40, pp.
1044–1056, Jul. 1994.

[33] T. Linder, C. Schlegel, and K. Zeger, “Corrected proof of De Buda’s
Theorem,” IEEE Trans. Inf. Theory, pp. 1735–1737, Sep. 1993.

[34] H. A. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE
Trans. Inf. Theory, vol. 43, pp. 1767–1773, Nov. 1997.

[35] J. Massey, “Variable-length codes and the Fano metric,” IEEE Trans.
Inf. Theory, vol. IT-18, pp. 196–198, Jan. 1972.

[36] S. Mohan and J. B. Anderson, “Computationally optimal metric-first
code tree search algorithms,” IEEE Trans. Commun., vol. COM-32, no.
6, pp. 710–717, Jun. 1984.

[37] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[38] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Trans. Inf. Theory, vol. 40, pp. 409–417, Mar. 1994.

[39] Y. Polyanskiy, H. Vincent Poor, and S. Verdu, “Channel coding rate
in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, pp.
2307–2359, May 2010.

[40] F. Rusek, “Partial Response and Faster-than-Nyquist Signaling,”
Ph.D., Lund Univ., Dep. Elect. Inf. Technol., Lund, Sweden, 2007.

[41] A. Said and J. B. Anderson, “Bandwidth-efficient coded modulation
with optimized linear partial-response signals,” IEEE Trans. Inf.
Theory, pp. 701–713, Mar. 1998.

[42] O. Shalvi, N. Sommer, and M. Feder, “Signal codes,” in Proc. 2003
Inf. Theory Workshop, 2003, pp. 332–336.

[43] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Oct. 1948.

[44] C. E. Shannon, “Probability of error for optimal codes in a Gaussian
channel,” Bell Syst. Tech. J., vol. 38, pp. 611–656, 1959.

[45] N. Shulman and M. Feder, “Improved error exponent for time-invariant
and periodically time-variant convolutional codes,” IEEE Trans. Inf.
Theory, vol. 46, pp. 97–103, Jan. 2000.

[46] N. Sommer, M. Feder, and O. Shalvi, “Closest point search in lattices
using sequential decoding,” in Proc. Int. Symp. Inf. Theory (ISIT), 2005,
pp. 1053–1057.

[47] N. Sommer, M. Feder, and O. Shalvi, “Low density lattice codes,” IEEE
Trans. Inf. Theory, vol. 54, pp. 1561–1585, Apr. 2008.

[48] N. Sommer, “Capacity approaching lattice codes,” Ph.D., Tel-Aviv
Univ., School of Elect. Eng., Tel-Aviv, Israel, 2008.

[49] N. Sommer, M. Feder, and O. Shalvi, “Shaping methods for low-den-
sity lattice codes,” in Proc. 2009 Inf. Theory Workshop, Taormina, Oct.
2009, pp. 238–242.

[50] N. Sommer, M. Feder, and O. Shalvi, “Finding the closest lattice point
by iterative slicing,” SIAM J. Discr. Math., vol. 23, no. 2, pp. 715–731,
2009.

[51] V. Tarokh, A. Vardy, and K. Zeger, Sequential Decoding of Lattice
Codes, 1996, to be published.

[52] M. Tomlinson, “New automatic equalizer employing modulo arith-
metic,” Electron. Lett., pp. 138–139, Mar. 1971.

[53] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the
AWGN channel,” IEEE Trans. Inf. Theory, pp. 273–278, Jan. 1998.

[54] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
pp. 260–269, Apr. 1967.

[55] A. Viterbi and J. Omura, Principles of Digital Communication and
Coding. New York: McGraw-Hill, 1979.

[56] J. M. Wozencraft and B. Reiffen, Sequential Decoding. New York:
Wiley , 1961.

[57] Y. Yona and M. Feder, “Efficient parametric decoder of low density
lattice codes,” in Proc. Int. Symp. Inf. Theory (ISIT), 2009.

Ofir Shalvi (M’04) received the B.Sc. degree in mathematics and physics from
the Hebrew University’s Talpiot Program (cum laude), and the M.Sc. (summa
cum laude) and the Ph.D. (with distinction) degrees in electrical engineering
from Tel-Aviv University, Israel, in 1984, 1988, and 1994, respectively.

He was a Postdoctoral Research Affiliate with the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, in 1994–1995, and a Visiting Professor with the School of
Electrical Engineering, Tel-Aviv University, during 2005–2006. He has filed
and holds more than 40 patents in the areas of signal processing and digital
communications. He was a cofounder and the Chief Technology Officer (CTO)
of Libit Signal Processing, a pioneer developer of cable modem technology,
which was acquired in 1999 by Texas Instruments (TI), where he was elected
TI Fellow. He is a cofounder and the CTO of Anobit Technologies, Herzlia,
Israel, a pioneer developer of advanced signal processing technologies to the
storage markets.

Dr. Shalvi was the recipient of the 1990 Israeli Minister of Communications
Award, the 1991 Clore Fellowship, the 1993 Wolfson Fellowship, and the 1994
Fulbright Fellowship.

Naftali Sommer (M’00–SM’05) received the B.Sc., M.Sc., and Ph.D. degrees
in electrical engineering from Tel-Aviv University, Israel, in 1990, 1994, and
2008, respectively.

From 1990 to 1996, he was with the Israel Ministry of Defence. In 1996,
he joined Libit Signal Processing, a pioneer developer of cable modem tech-
nology, as its chief engineer. After the acquisition of Libit by Texas Instruments
(TI) in 1999, he was elected as TI Distinguished Member of the Technical Staff
(DMTS), and was the chief scientist of TI’s cable broadband communications
business unit until 2006. Since 2007, he has been the chief scientist of Anobit
Technologies, Herzlia, Israel, a pioneer developer of advanced signal processing
technologies for the storage markets.

Meir Feder (S’81–M’87–SM’93–F’99) received the B.Sc. and M.Sc. degrees
from Tel-Aviv University, Israel, and the Sc.D. degree from the Massachusetts
Institute of Technology (MIT) Cambridge, and the Woods Hole Oceanographic
Institution, Woods Hole, MA, all in electrical engineering in 1980, 1984, and
1987, respectively.

After being a Research Associate and Lecturer with MIT, he joined the School
of Electrical Engineering, Tel-Aviv University, where he is now a Professor.
He had visiting appointments with the Woods Hole Oceanographic Institution,
Scripps Institute, Bell Laboratories, and during 1995–1996, he has been a Vis-
iting Professor at MIT. He is also extensively involved in the high-tech industry
and cofounded several companies including Peach Networks, a developer of a
unique server-based interactive TV solution which was acquired on March 2000
by Microsoft, and Amimon a leading provider of ASICs for wireless high-defi-
nition A/V connectivity at the home.

Prof. Feder is a corecipient of the 1993 IEEE Information Theory Best Paper
Award. He also received the 1978 “creative thinking” award of the Israeli De-
fense Forces, the 1994 Tel-Aviv University prize for Excellent Young Scientists,
the 1995 Research Prize of the Israeli Electronic Industry, and the Research
Prize in applied electronics, awarded by Ben-Gurion University. Between June
1993-June 1996, he served as an Associate Editor for Source Coding of the IEEE
TRANSACTIONS ON INFORMATION THEORY.

